CAVE, ARE, ARVS, ACM, DTI, Agent-Wallet abstraction, MACE
--Agent Runtime Execution Model
The ARE provides a secure, resource-managed environment for agent execution:
ExecutionContext { agent_id: UUID, resource_limits: ResourceLimits, access_permissions: AccessRights, execution_boundaries: Boundaries, monitoring_hooks: [MonitorHook], state_persistence: PersistencePolicy }
--Agents Communication Protocol
Agents communicate through a secure messaging system:
AgentMessage { sender: AgentID, recipient: AgentID, content_type: ContentType, payload: EncryptedPayload, signatures: [Signature], context_reference: ContextID, verification_proof: ZKProof }
--CAVE (Controlled Agents Virtual Environment)
Cave implements a one click deployment process:
function deployAgent(agent, deployment_options) { // Validate agent structure validation_result = validateAgent(agent); if (!validation_result.valid) return validation_result.errors;
// Compile agent to target format compiled_agent = compileAgent(agent, deployment_options.target);
// Security scan security_scan = performSecurityScan(compiled_agent); if (security_scan.vulnerabilities.length > 0) return security_scan.vulnerabilities;
// Generate deployment package deployment_package = createDeploymentPackage( compiled_agent, deployment_options );
// Submit to registry registry_result = submitToRegistry(deployment_package);
// Deploy to selected nodes deployment_result = deployToNodes( registry_result.agent_id, deployment_options.nodes );
return deployment_result; }
--Agent Reputation
Agents build reputation through:
function updateReputation(agent_id, interaction_result) { current_reputation = getAgentReputation(agent_id);
// Factor in new interaction weighted_score = calculateWeightedScore( interaction_result, current_reputation );
// Apply temporal decay decayed_reputation = applyTemporalDecay(current_reputation);
// Calculate new reputation new_reputation = combineScores( decayed_reputation, weighted_score );
// Update on-chain updateOnChainReputation(agent_id, new_reputation);
return new_reputation; }
--Decentralized Training Infrastructure
DataAccessRequest { requesting_agent: UUID, data_sources: [DataSourceIdentifier], access_purpose: Purpose, processing_location: Location, privacy_guarantees: [PrivacyMeasure], result_usage: UsageIntent, verification_proofs: [ZKProof] }
DTI Privacy-Preserve Training
function secureTraining(model, data_sources, privacy_params) { // Set up secure training environment secure_env = createSecureEnvironment(privacy_params);
// Prepare privacy-preserving data access data_access = setupPrivacyPreservingAccess( data_sources, privacy_params.epsilon );
// Execute training in secure environment training_result = executeSecureTraining( model, data_access, secure_env );
// Generate training proof training_proof = generateTrainingProof( model.initial_state, training_result.final_state, privacy_params );
return { trained_model: training_result.final_state, privacy_guarantee: privacy_params, training_proof: training_proof }; }
--Agent-Wallet Abstraction Integration.
Cognibit agent-wallet abstraction integration, allows the developer or deployer to give an agent control over a wallet, with minimal or no guidance following all security measures set in place.
function authorizeAgentForWallet(agent_id, wallet_id, permissions) { // Create permission boundary boundary = createPermissionBoundary(permissions);
// Set up monitoring conditions monitoring = setupMonitoringConditions( permissions.risk_level, permissions.action_types );
// Create authorization record auth_record = createAuthorizationRecord( agent_id, wallet_id, boundary, monitoring, permissions.time_limit );
// Register with wallet system wallet_registration = registerAgentWithWallet( wallet_id, agent_id, auth_record );
return wallet_registration; }
--MACE:
MACE builds upon traditional consensus mechanisms but is specifically optimized for AI agent validation by incorporating:
Reality-Anchored Verification: Validating AI outputs against objective reality markers
Probabilistic Truth Convergence: Using multiple models to approximate optimal solutions
Game-Theoretic Incentive Alignment: Rewarding honest validation and penalizing collusion
--ZK-Proof Implementation for Validation Privacy
1. Validation Circuit Architecture
We implement specialized zero-knowledge circuits for each validation dimension:
zkp_logical = GrothProof(φₗ(A) ≥ threshold_l) zkp_factual = GrothProof(φₑ(A) ≥ threshold_e) zkp_constraints = GrothProof(φₖ(A) ≥ threshold_k) zkp_optimality = GrothProof(φₒ(A) ≥ threshold_o)
These proofs demonstrate validation correctness without revealing specific validations.
2. Private Validation Inputs
Validators can incorporate private information into their validation without revealing it:
zkp_validation = Prove(public_params, private_knowledge, "validation_score ≥ threshold")
--Integration with MCP (Model Context Protocol)
. Context-Enriched Transactions
Each AI-initiated transaction includes:
Action Payload: The actual transaction data
Context Vector: MCP-encoded reasoning and context
Decision Boundary Proof: ZK-proof of decision rule compliance
Confidence Metrics: Probabilistic confidence intervals
. Context Verification Flow:
function verify_mcp_context(transaction, context_vector): # Verify context integrity assert hash(context_vector) == transaction.context_hash
Last updated