CogniBit Docs
  • COGNIBIT DOCUMENTATION
  • Understand CogniBit
    • Introduction to Cognibit
      • Cross-chain compatibility
    • Understand Cognibit Agent Network
      • CAVE, ARE, ARVS, ACM, DTI, Agent-Wallet abstraction, MACE
    • Plug and Play Architecture
    • Validators And Contributors
  • CogniBit Ecosystem
    • Cognibit Marketplace
    • Cognibit Token Utility And Incentive ($CBT)
    • FAQs
    • Cognibit Ethics
Powered by GitBook
On this page
  1. Understand CogniBit
  2. Understand Cognibit Agent Network

CAVE, ARE, ARVS, ACM, DTI, Agent-Wallet abstraction, MACE

--Agent Runtime Execution Model

The ARE provides a secure, resource-managed environment for agent execution:

ExecutionContext { agent_id: UUID, resource_limits: ResourceLimits, access_permissions: AccessRights, execution_boundaries: Boundaries, monitoring_hooks: [MonitorHook], state_persistence: PersistencePolicy }

--Agents Communication Protocol

Agents communicate through a secure messaging system:

AgentMessage { sender: AgentID, recipient: AgentID, content_type: ContentType, payload: EncryptedPayload, signatures: [Signature], context_reference: ContextID, verification_proof: ZKProof }

--CAVE (Controlled Agents Virtual Environment)

Cave implements a one click deployment process:

function deployAgent(agent, deployment_options) { // Validate agent structure validation_result = validateAgent(agent); if (!validation_result.valid) return validation_result.errors;

// Compile agent to target format compiled_agent = compileAgent(agent, deployment_options.target);

// Security scan security_scan = performSecurityScan(compiled_agent); if (security_scan.vulnerabilities.length > 0) return security_scan.vulnerabilities;

// Generate deployment package deployment_package = createDeploymentPackage( compiled_agent, deployment_options );

// Submit to registry registry_result = submitToRegistry(deployment_package);

// Deploy to selected nodes deployment_result = deployToNodes( registry_result.agent_id, deployment_options.nodes );

return deployment_result; }

--Agent Reputation

Agents build reputation through:

function updateReputation(agent_id, interaction_result) { current_reputation = getAgentReputation(agent_id);

// Factor in new interaction weighted_score = calculateWeightedScore( interaction_result, current_reputation );

// Apply temporal decay decayed_reputation = applyTemporalDecay(current_reputation);

// Calculate new reputation new_reputation = combineScores( decayed_reputation, weighted_score );

// Update on-chain updateOnChainReputation(agent_id, new_reputation);

return new_reputation; }

--Decentralized Training Infrastructure

DataAccessRequest { requesting_agent: UUID, data_sources: [DataSourceIdentifier], access_purpose: Purpose, processing_location: Location, privacy_guarantees: [PrivacyMeasure], result_usage: UsageIntent, verification_proofs: [ZKProof] }

DTI Privacy-Preserve Training

function secureTraining(model, data_sources, privacy_params) { // Set up secure training environment secure_env = createSecureEnvironment(privacy_params);

// Prepare privacy-preserving data access data_access = setupPrivacyPreservingAccess( data_sources, privacy_params.epsilon );

// Execute training in secure environment training_result = executeSecureTraining( model, data_access, secure_env );

// Generate training proof training_proof = generateTrainingProof( model.initial_state, training_result.final_state, privacy_params );

return { trained_model: training_result.final_state, privacy_guarantee: privacy_params, training_proof: training_proof }; }

--Agent-Wallet Abstraction Integration.

Cognibit agent-wallet abstraction integration, allows the developer or deployer to give an agent control over a wallet, with minimal or no guidance following all security measures set in place.

function authorizeAgentForWallet(agent_id, wallet_id, permissions) { // Create permission boundary boundary = createPermissionBoundary(permissions);

// Set up monitoring conditions monitoring = setupMonitoringConditions( permissions.risk_level, permissions.action_types );

// Create authorization record auth_record = createAuthorizationRecord( agent_id, wallet_id, boundary, monitoring, permissions.time_limit );

// Register with wallet system wallet_registration = registerAgentWithWallet( wallet_id, agent_id, auth_record );

return wallet_registration; }

--MACE:

MACE builds upon traditional consensus mechanisms but is specifically optimized for AI agent validation by incorporating:

  1. Reality-Anchored Verification: Validating AI outputs against objective reality markers

  2. Probabilistic Truth Convergence: Using multiple models to approximate optimal solutions

  3. Game-Theoretic Incentive Alignment: Rewarding honest validation and penalizing collusion

--ZK-Proof Implementation for Validation Privacy

1. Validation Circuit Architecture

We implement specialized zero-knowledge circuits for each validation dimension:

zkp_logical = GrothProof(φₗ(A) ≥ threshold_l) zkp_factual = GrothProof(φₑ(A) ≥ threshold_e) zkp_constraints = GrothProof(φₖ(A) ≥ threshold_k) zkp_optimality = GrothProof(φₒ(A) ≥ threshold_o)

These proofs demonstrate validation correctness without revealing specific validations.

2. Private Validation Inputs

Validators can incorporate private information into their validation without revealing it:

zkp_validation = Prove(public_params, private_knowledge, "validation_score ≥ threshold")

--Integration with MCP (Model Context Protocol)

. Context-Enriched Transactions

Each AI-initiated transaction includes:

  1. Action Payload: The actual transaction data

  2. Context Vector: MCP-encoded reasoning and context

  3. Decision Boundary Proof: ZK-proof of decision rule compliance

  4. Confidence Metrics: Probabilistic confidence intervals

. Context Verification Flow:

function verify_mcp_context(transaction, context_vector): # Verify context integrity assert hash(context_vector) == transaction.context_hash

# Verify context relevance
assert context_includes_required_factors(context_vector, transaction.type)

# Verify reasoning path
assert valid_reasoning_path(context_vector, transaction.action)

# Verify boundary compliance
assert verify_zk_proof(transaction.boundary_proof, 
                      context_vector, transaction.action)
PreviousUnderstand Cognibit Agent NetworkNextPlug and Play Architecture

Last updated 1 month ago